An International Journal House

Einstein International Journal Organization(EIJO)

Connecting People With Genius Thought

Einstein International Journal Organization(EIJO) is an international Genius Thought journals platform .
JOURNALS || EIJO Journal of Ayurveda, Herbal Medicine and Innovative Research (EIJO – AHMIR) [ ISSN : 2456 - 530X ]
Antioxidant Profiles of Momordica Charantia, Ocimum Sanctum and Moringa Oleifera: Methods, Mechanisms and Therapeutic Implications

Author Names : 1Gajendra Singh, 2Dr. B. K. Kumawat  Volume 10 Issue 6
Article Overview

Abstract

Common medicinal plants with antioxidant properties include Moringa oleifera, Ocimum sanctum (holy basil), and Momordica charantia (bitter melon). There is a lack of a thorough comparative analysis of their phytochemical antioxidants, assay findings, and possible therapeutic utility. To identify knowledge gaps and suggest standardized comparative methodologies, the antioxidant composition and activity of M. charantia, O. sanctum, and M. oleifera will be critically reviewed and compared across extraction techniques, in-vitro/in-vivo assays, and human studies. systematic search of the literature for studies reporting phytochemical profiles, total phenolic/flavonoid contents, and antioxidant assays using electronic databases (PubMed, Scopus, Web of Science, and Google Scholar).Methodological heterogeneity and assay standardization were discussed, along with a qualitative and, if feasible, quantitative summary of the data.  Strong antioxidant activity is demonstrated by each species, although the dominant compounds vary: M. oleifera has high levels of phenolics, flavonoids, and ascorbate; O. sanctum has eugenol, ursolic acid, and rosmarinic acid; and M. charantia has momordicosides, phenolics, and carotenoids.  Assay results depend on both the assay and the extraction; protocol heterogeneity limits direct comparisons. Standardized extraction and assay procedures are necessary for accurate head-to-head comparison, even though all three plants show encouraging antioxidant potential. Standardized multi-assay panels, phytochemical fingerprinting (HPLC/LC-MS), and carefully planned in vivo/clinical studies should all be a part of future research.

Keywords: Momordica Charantia, Ocimum Sanctum, Moringa Oleifera, Antioxidant Activity, DPPH, Total Phenolic Content, Phytochemistry, Comparative Review

Reference
  1. Ghosh, R., & Ghosh, D. (2020). Antioxidants and their role in oxidative stress-linked diseases: A review. Journal of Clinical and Diagnostic Research, 14(6), 1–8. https://doi.org/10.7860/JCDR/2020/43758.13879
  2. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
  3. Grover, J. K., & Yadav, S. (2004). Pharmacological actions and potential uses of Momordica charantia: A review. Journal of Ethnopharmacology, 93(1), 123–132. https://doi.org/10.1016/j.jep.2004.03.016
  4. Prakash, P., & Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian Journal of Physiology and Pharmacology, 49(2), 125–131.
  5. Fahey, J. W. (2005). Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal, 1(5), 1–15.
  6. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
  7. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
  8. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  9. Cao, G., Alessio, H. M., & Cutler, R. G. (1993). Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine, 14(3), 303–311. https://doi.org/10.1016/0891-5849(93)90027-R
  10. Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285.
  11. Gülçin, ?. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220. https://doi.org/10.1016/j.tox.2005.09.011
  12. Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press.
  13. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
  14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  15. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
  16. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
  17. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
  18. Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry, 55(22), 8896–8907.
  19. Anusmitha, M. S., Nair, A. G., & Sreedevi, P. (2022). Ultrasound-assisted extraction of bioactive compounds and antioxidant potential from Ocimum species. Journal of Food Biochemistry, 46(12), e14432. https://doi.org/10.1111/jfbc.14432
  20. Bhuker, A., Kumar, R., & Dahiya, P. (2023). Comparative analysis of antioxidant potential and phytochemical composition of different parts of Moringa oleifera (PKM-1 variety). International Journal of Pharmaceutical Sciences and Research, 14(5), 2345–2354.
  21. Braham, F., Chemat, S., & Khadhraoui, B. (2022). Green extraction of bioactive compounds from Moringa oleifera leaves using deep eutectic solvents: Optimization and antioxidant evaluation. Food Chemistry, 393, 133338. https://doi.org/10.1016/j.foodchem.2022.133338
  22. Chaudhary, A., Singh, N., & Agarwal, V. (2020). Antioxidant profiling and phenolic composition of Ocimum sanctum leaf extracts and solvent fractions. Pharmacognosy Journal, 12(1), 150–157. https://doi.org/10.5530/pj.2020.12.25
  23. Fidrianny, I., Sukrasno, S., & Wirasutisna, K. R. (2015). Antioxidant capacities of different organs of Momordica charantia L. in various polarities of solvent extracts. Asian Journal of Pharmaceutical and Clinical Research, 8(5), 223–227.
  24. González-Romero, J., Escalante-Aburto, A., & Hernández-Ortega, M. (2020). Comparative evaluation of antioxidant capacity and phenolic content in Moringa oleifera leaves and common salad greens. Journal of Food Measurement and Characterization, 14(2), 1234–1243. https://doi.org/10.1007/s11694-019-00314-y
  25. Olaoye, O. J., Oyedeji, A. O., & Oyedeji, O. O. (2021). Influence of geographical location on the phytochemical and antioxidant composition of Moringa oleifera leaves. Journal of Medicinal Plants Research, 15(4), 167–175.
  26. Perumal, V., Kumar, S., & Kumaran, R. S. (2021). Phytochemical profiling and antioxidant potential of Momordica charantia fruit extracts. Journal of Applied Pharmaceutical Science, 11(10), 82–89. https://doi.org/10.7324/JAPS.2021.111010
  27. Pham, H. N. T., Nguyen, T. T., & Tran, T. L. (2019). Antioxidant and cytoprotective activities of extracts from wild bitter melon (Momordica charantia). Journal of Food Biochemistry, 43(4), e12797. https://doi.org/10.1111/jfbc.12797
  28. Trevisan, M. T. S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., & Owen, R. W. (2006). Characterization of phenolic constituents in Ocimum sanctum L. (Holy basil) and their antioxidant capacity. Food and Chemical Toxicology, 44(9), 1474–1481. https://doi.org/10.1016/j.fct.2006.04.019
  29. Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press.
  30. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
  31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  32. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292