

EIJO: Journal of Ayurveda, Herbal Medicine and Innovative Research (EIJO - AHMIR)

Einstein International Journal Organization (EIJO)

Available Online at: www.eijo.in

Volume - 10, Issue - 6, November - December - 2025, Page No.: 01 - 16

Antioxidant Profiles of Momordica Charantia, Ocimum Sanctum and Moringa Oleifera: Methods, Mechanisms and Therapeutic Implications

¹Gajendra Singh, Research Scholar, Department of Pharmaceutical Science, Northern Institute of Pharmacy & Research, Alwar, Rajasthan University of Health Sciences, Jaipur, Rajasthan.

²Dr. B. K. Kumawat, Professor and Principal, Department of Pharmaceutical Science, Northern Institute of Pharmacy & Research, Alwar, Rajasthan University of Health Sciences, Jaipur, Rajasthan.

Corresponding Author: Gajendra Singh, Research Scholar, Department of Pharmaceutical Science, Northern Institute of Pharmacy & Research, Alwar, Rajasthan University of Health Sciences, Jaipur, Rajasthan.

Type of Publication: Original Research Article

Conflicts of Interest: Nil

Abstract

Common medicinal plants with antioxidant properties include Moringa oleifera, Ocimum sanctum (holy basil), and Momordica charantia (bitter melon). There is a lack of a thorough comparative analysis of their phytochemical antioxidants, assay findings, and possible therapeutic utility. To identify knowledge gaps and suggest standardized comparative methodologies, the antioxidant composition and activity of M. charantia, O. sanctum, and M. oleifera will be critically reviewed and compared across extraction techniques, in-vitro/in-vivo assays, and human studies. systematic search of the literature for studies reporting phytochemical profiles, total phenolic/flavonoid contents, and antioxidant assays using electronic databases (PubMed, Scopus, Web of Science, and Google Scholar). Methodological heterogeneity and assay standardization were discussed, along with a qualitative and, if feasible, quantitative summary of the data. Strong antioxidant activity is demonstrated by each species, although the dominant compounds vary: M. oleifera has high levels of phenolics, flavonoids, and ascorbate; O. sanctum has eugenol, ursolic acid, and rosmarinic acid; and M. charantia has momordicosides, phenolics, and carotenoids. Assay results depend on both the assay and the extraction; protocol heterogeneity limits direct comparisons. Standardized extraction and assay procedures are necessary for accurate head-to-head comparison, even though all three plants show encouraging antioxidant potential. Standardized multi-assay panels, phytochemical fingerprinting (HPLC/LC-MS), and carefully planned in vivo/clinical studies should all be a part of future research.

Keywords: Momordica Charantia, Ocimum Sanctum, Moringa Oleifera, Antioxidant Activity, DPPH, Total Phenolic Content, Phytochemistry, Comparative Review

Introduction

Oxidative Stress and Health Relevance

When the body's natural antioxidant defense systems and the generation of reactive oxygen species (ROS) are out of balance, oxidative stress results. Overproduction of ROS can harm proteins, lipids, and DNA, which can lead to the development of chronic illnesses like diabetes, heart disease, cancer, neurodegenerative diseases, and aging-related

disorders. Therefore, controlling oxidative stress is essential for preserving cellular homeostasis and stopping the progression of disease.1

Importance of Plant Antioxidants in Nutraceuticals and Therapeutics

Antioxidants derived from plants, including polyphenols, flavonoids, vitamins, and carotenoids, work by scavenging free radicals, chelating metal ions, and modifying endogenous antioxidant enzymes. When added to therapeutic formulations, functional foods, and nutraceuticals, these substances not only stop oxidative damage at the cellular level but also have positive health effects. Because of their natural source, safety record, and possible synergistic effects when compared to synthetic antioxidants, plant antioxidants have gained more attention.²

Plants Description

Momordica charantia (Bitter Melon): Mordica charantia (bitter melons): Found throughout Asia, Africa, and the Caribbean, this plant has long been used to treat infections, diabetes, and gastrointestinal issues. Its medicinal qualities are enhanced by the abundance of bioactive substances like cucurbitane glycosides, saponins, and triterpenoids found in its fruit, seeds, and leaves.³

Bitter Melon (Momordica charantia)

Botanical Name	Momordica charantia			
Family	Cucurbitaceae			
Common Names	Bitter Melon, Bitter Gourd, Karela			
Habit	Annual or perennial climbing vine			
Distribution	Tropical and subtropical regions of Asia, Africa, and the Caribbean			
Plant Height	2-5 meters (climbing tendrils)			
Stem	Slender, green, angular, trailing or clinbing; bears tendrils			
Leaves	Simple, alternate, deeply lobed (5-7 lobes) rough texture			
Flowers	Unisexual, yellow, 2-3 cm in diameter; male and female flowers on same plant (monoecious)			
Seeds	Flat, oblong, brownish-red with a white aril, bitter taste			

antioxidant, antiviral, anti-inflammatory

Figure 1: Plant profile of Bitter Melon

Ocimum sanctum (Holy Basil/Tulsi): Holy basil, which is indigenous to India, is valued in Ayurvedic medicine for its antimicrobial, immunomodulatory, anti-inflammatory, and adaptogenic qualities. The phenolic compounds,

rosmarinic acid, and eugenol found in leaves and essential oils are what give it its medicinal and antioxidant properties.⁴

H	oly Basil (Ocimum san	nctum)
Botanical Name	Ocimum sanctum	
Family	Lamiaceae	
Common Names	Holy Basil, Tulsi	
Habit	Short-lived perennial herb	
Distribution	Native to India, especially the eastern Himalayas	
Plant Height	0.3-1.5 meters	
Stem	Square, hairy stems	
Leaves	Simple, opposite, ovate leaves with serrate margins	
Flowers	Small, purple or white flowers arranged in a spike	
Seeds	Small, round, dark brown	
Medicinal Uses	antioxidant, anti-inflammatory, antimicrobial, adaptogenic	antioxidant, anti-inflammatory

Figure 2: Plant Profile of Holy Basil

• Moringa oleifera (Moringa): Originating in South Asia, Moringa is now widely grown in tropical areas and is referred to as a "miracle tree" because of its therapeutic and nutritional benefits. Rich in polyphenols, vitamins, and minerals, leaves, seeds, and roots have long been used to treat wound healing, inflammation, and malnutrition.⁵

Moringa (Moringa oleifera)

Botanical Name	Moringa oleifera
Family	Moringaceae
Common Names	Moringa, Drumstick Tree
Habit	Perennial deciduous tree
Distribution	Native to the Himalavan regions of India, Bangladesh, and Afghanistan
Plant Height	Up to 12 meters
Stem	Dark, slender, and natuirally drooping with corky bark
Flowers	Tripinnately compound leaves with ovoid leaflets in opposife arrangement
Seeds	Small, white flowers in large clusters; bell-shaped; bisexual
Medicinal Uses	nutrient-rich, antioxidant, antrimrobial, anti-inflammatory

Medicinal Uses nutrient-rich, antioxidant; antimicrobial, anti-inflammaory

Figure 3: Plant Profile of Moringa Oleifera

Rationale for Comparative Review and Objectives

There is little combined data comparing the antioxidant capacities of M. charantia, O. sanctum, and M. oleifera, despite in-depth research on individual plants. A comparative review offers a framework for comprehending their relative effectiveness, identifying the best plant parts and extraction techniques, and directing their use in therapeutic and nutraceutical applications. This review's goals are to highlight methodological variations, offer recommendations for future research directions, and systematically assess the in vitro, in vivo, and clinical data regarding these species' antioxidant activities.⁶

Methods Used to Measure Antioxidant Activity

Several chemical and biological tests with varying reaction mechanisms and radical types are used to evaluate antioxidant potential. While DPPH, ABTS, and FRAP measure free-radical scavenging or reducing power in vitro, the TPC and TFC assays quantify total reducing compounds. Because ORAC mimics the peroxyl radicals present in biological systems, it is thought to be more physiologically relevant. Lipid peroxidation in biological tissues is reflected by TBARS (MDA estimation), while reducing power assays offer supplementary data on electron-donating capacity. By taking into account uptake and metabolism within living cells, cellular antioxidant assays bring evaluation into the biological realm. A complex plant extract's total antioxidant capacity cannot be represented by a single assay because each one measures a

distinct component of antioxidant behavior, such as electron transfer, hydrogen atom transfer, metal chelation, or radical quenching.[7]For thorough and trustworthy comparisons between Momordica charantia, Ocimum sanctum, and Moringa oleifera extracts, multi-assay panels are given in Table 1.

Table 1: Common Methods Used to Measure Antioxidant Activity and Their Analytical Characteristics 8,9,10

Assay / Method	Principle / Reaction	Expression of	Major Advantages	Limitations / Considerations
	Basis	Results (Units)		
Total Phenolic	Reduction of	mg Gallic Acid	Simple, rapid,	Non-specific—reacts with
Content (TPC) —	phosphomolybdate-	Equivalents	inexpensive; good	other reducing agents
Folin-Ciocalteu	phosphotungstate	(GAE)/g extract or	indicator of total	(ascorbate, sugars); not a
method	complex (Folin	sample.	reducing capacity.	direct measure of antioxidant
	reagent) by phenolic			activity.
	compounds → blue			
	color measured at			
	760–765 nm.			
Total Flavonoid	Formation of stable	mg Quercetin or	Estimates total	Specific only for certain
Content (TFC) —	complex between	Catechin	flavonoid	flavonoid structures; cannot
AlCl ₃ colorimetric	AlCl ₃ and flavonoid	Equivalents (QE or	concentration;	distinguish subclasses.
method	keto/hydroxyl groups	CE)/g extract.	quick and	
	→ yellow color at		reproducible.	
	415 nm.			
DPPH Radical	Reduction of purple	% inhibition or IC50	Widely used,	Solvent sensitivity (works
Scavenging Assay	DPPH• (2,2-	(μg/mL), or μmol	simple, cost-	best in methanol/ethanol);
	diphenyl-1-	Trolox Equivalents	effective; stable	limited for hydrophilic
	picrylhydrazyl)	(TE)/g.	radical source.	compounds; not biologically
	radical to yellow			relevant radical.
	DPPH-H;			
	absorbance decrease			
	at 517 nm.			
ABTS Radical	Reduction of blue-	μmol Trolox	Applicable to both	Requires generation of
Cation	green ABTS ⁺ •	Equivalents (TE)/g	hydrophilic and	ABTS+•; sensitive to pH and
Decolorization	radical cation ($\lambda =$	or mM TE/mL.	lipophilic	solvent; less stable than
Assay	734 nm) by		antioxidants; fast	DPPH.
	antioxidants.		and reproducible.	
Ferric Reducing	Reduction of Fe ³⁺ -	μmol Fe ²⁺	Simple, fast,	Measures reducing power
Antioxidant Power	TPTZ complex to	Equivalents/g or	reproducible; no	only; cannot detect thiols;

(FRAP)	blue Fe ²⁺ –TPTZ by	μmol Trolox	radical generation	pH-dependent;
	antioxidants;	Equivalents/g.	step.	underestimates thiol
	absorbance at 593			antioxidants.
	nm.			
Oxygen Radical	Measures ability of	μmol Trolox	Physiologically	Requires fluorescence
Absorbance	antioxidants to	Equivalents (TE)/g	relevant (peroxyl	spectrophotometer; time-
Capacity (ORAC)	inhibit oxidation of	sample.	radicals); suitable	consuming; sensitive to
	fluorescent probe		for both	conditions.
	(fluorescein) by		hydrophilic and	
	peroxyl radicals		lipophilic systems.	
	(AAPH generator).			
Reducing Power	Antioxidants reduce	Absorbance	Simple estimation	Non-specific; does not
Assay	Fe ³⁺ /ferricyanide	increase or µmol	of electron-	directly quantify radical
	complex to $Fe^{2+} \rightarrow$	Fe ²⁺ /g extract.	donating capacity;	scavenging potential.
	Prussian blue		correlates with	
	formation measured		TPC/TFC.	
	at 700 nm.			
Lipid Peroxidation	Measures	nmol MDA/mg	Widely used in	Lacks specificity—TBA
(TBARS/MDA)	malondialdehyde	protein or µmol	vivo indicator of	reacts with other aldehydes;
Assay	(MDA) formed from	MDA/g tissue.	oxidative damage;	can overestimate MDA.
	lipid peroxidation		useful for	
	reacting with		biological samples.	
	thiobarbituric acid			
	$(TBA) \rightarrow pink$			
	adduct at 532 nm.			
Cellular	Measures	Relative	Reflects	Requires cell culture;
Antioxidant	intracellular	fluorescence units	bioavailability,	complex and expensive;
Activity (CAA)	oxidation of	(RFU) or %	uptake,	results vary with cell type
Assay	fluorescent probe	inhibition vs	metabolism;	and conditions.
	(DCFH-DA) to DCF	control.	biologically	
	in cultured cells;		relevant.	
	antioxidants reduce			
	fluorescence			
	intensity.			

Assay patterns & top performers. Top performers and assay patterns. M. oleifera is the most reliable in vitro antioxidant source of the three species in the literature sampled above because moringa leaf extracts consistently rank among the top performers in DPPH, ABTS, FRAP, and ORAC assays and exhibit high TPC across numerous independent studies. Momordica charantia exhibits moderate but significant antioxidant activity, frequently depending on the plant organ and extraction technique employed; Ocimum sanctum (holy basil) also performs well in a variety of tests, especially when phenolic-rich solvent fractions (butanol, ethyl acetate) or essential oils are examined.¹¹

Role of solvent and extraction method. One of the main factors influencing assay results is solvent polarity. In comparison to aqueous or nonpolar solvents, methanol/ethanol and hydroethanolic systems consistently yield higher TPC/FRAP/ABTS values and lower DPPH IC₃₀s while extracting a wide range of phenolics and flavonoids. By increasing extraction efficiency, newer green solvents (DES) and assisted extraction (ultrasound, microwave, UAE) frequently raise measured TPC and assay responses. As a result, care should be taken when directly comparing studies that employed various extraction systems.¹²

Influence of plant part. Among the three species, leaves are the most abundant and reliable source of antioxidant activity (high levels of vitamin C, polyphenols, and chlorophyll). When compared on equivalent dry-weight bases, seeds and roots usually exhibit lower activity than leaves, though in some species they can be active (for example, concentrated seed oils or seed extracts with particular phenolics). For Momordica, fruit pulp typically exhibits less activity than leaves. ¹³

Heterogeneity & reporting issues. Heterogeneity in (1) assay protocols (concentrations, incubation times, calibration standard used), (2) unit reporting (fresh vs. dry weight, μg/mL vs. μmol TE/g), (3) extraction parameters (solvent, ratio, time, temperature), and (4) plant material (chemotype, harvest time, leaf age, drying method) are major barriers to a quantitative head-to-head meta-analysis. Prior to data pooling, note assay-specific cautions (e.g., DPPH preference for lipophilic systems) and convert units to common bases (e.g., μmol TE/g dry weight).¹⁴

Table 2: Comparative summary of in-vitro assay results, effects of extraction solvent and plant part 15,16,17

Assay	Typical findings (species	Effect of extraction solvent	Effect of plant part	
	comparison)			
DPPH (radical	Moringa leaves most often	Polar organic solvents (methanol,	Leaves generally outperform	
scavenging; IC50	show strongest DPPH	ethanol) and hydroethanolic	seeds/roots; for Momordica,	
or % inhibition)	scavenging (lowest IC50 /	mixtures typically extract more	seeds and fruit sometimes	
	highest % inhibition), followed	DPPH-active compounds than	show activity but leaf	
	by Ocimum leaves (variable	water; methanolic extracts often	extracts are more consistent.	
	depending on chemotype), with	report lower IC50. Deep-eutectic		
	Momordica (fruit/leaf) showing	solvents and optimized		
	moderate activity across	hydroalcoholic methods can		
	studies.	increase yields.		
ABTS (radical	Moringa and Ocimum typically	ABTS is compatible with both	Leaves > stems/roots;	
cation; TE/g)	show high ABTS values;	hydrophilic and lipophilic	essential-oil fractions of	

	Momordica shows moderate	extracts; solvents that capture	Ocimum can have strong
	ABTS depending on extraction.	both classes (hydroethanolic,	ABTS activity due to
	ABTS often gives higher	ethyl acetate fractions) give	phenylpropanoids.
	numeric values than DPPH	elevated ABTS scores.	
	because it measures both		
	hydrophilic and lipophilic		
	antioxidants.		
FRAP (reducing	FRAP correlates strongly with	Methanol/ethanol and	Leaf extracts (high
power; µmol	TPC; Moringa leaves often	hydroethanolic extracts	chlorophyll/phenolic
Fe ²⁺ eq./g)	report the highest FRAP values,	commonly show higher FRAP;	content) > roots/seeds for
	followed by Ocimum (but	non-polar solvents give low	FRAP. Some seeds show
	ethyl-acetate/butanol fractions	FRAP. FRAP is pH-sensitive so	high reducing power if
	may top crude extracts), and	assay conditions matter.	oil/phenolic seed fractions
	Momordica shows moderate		concentrated.
	reducing power.		
ORAC (peroxyl	Fewer studies report ORAC;	ORAC responds to extraction that	Leaves generally higher
radical	where measured, Moringa leaf	preserves peroxyl-active	ORAC; roots and seeds
quenching;	extracts often show high	phenolics (aqueous + organic	lower unless specifically
μmol TE/g)	ORAC, Ocimum variable by	fractions both relevant). Requires	concentrated for peroxyl-
	chemotype, Momordica	careful sample prep to avoid	active compounds.
	moderate. ORAC often aligns	fluorescence quenching.	
	with FRAP/TPC but captures		
	H-atom transfer capacity.		
Total Phenolic	Moringa leaves typically show	Methanolic and hydroethanolic	Leaf tissues (high
Content (TPC;	the highest TPC (often reported	extractions give higher TPC than	polyphenol & flavonoid
mg GAE/g)	in the range of several 10s–100s	pure water or nonpolar solvents;	density) >> seeds/roots/fruit
	mg GAE/g depending on dry	extraction time/temperature and	pulp for TPC. Within
	weight basis and method),	solvent ratio strongly influence	species, young leaves often
	Ocimum leaves and	TPC. DES and	show higher TPC.
	butanol/ethyl-acetate fractions	ultrasound/microwave assisted	
	show high TPC, Momordica	extractions can increase TPC.	
	variable but generally lower		
	than moringa leaves in many		
	comparative studies. TPC		
	correlates moderately-strongly		

	with DPPH/FRAP in pooled		
	datasets.		
Reducing power	Trends match FRAP and TPC:	Same solvent patterns: polar	Leaves > seeds/roots in most
/ other	Moringa > Ocimum (extract-	organic solvents > nonpolar.	cases.
colorimetric	dependent) > Momordica		
assays	(variable).		
Lipid	Moringa leaf extracts often	Lipophilic extracts (ether/ethyl	Leaf and seed oil fractions
peroxidation	show strong inhibition of lipid	acetate) can be more effective in	can be effective; aqueous
inhibition (in	peroxidation; Ocimum essential	lipid models; formulation	leaf extracts less so in lipid-
vitro TBARS /	oils and phenolic fractions also	(presence of lipids) influences	based systems.
linoleic acid	effective; Momordica shows	efficacy.	
models)	moderate inhibition in many		
	reports.		

Table 3: Meta-table — representative studies (study species plant part, extraction, assay(s), result / reported units)^{18,19,20,21}

Ctuder (veces)	Chasias	Dlant mont	Extraction	A acarr(a)	Damantad magnit (unita)
Study (year)	Species	Plant part	Extraction	Assay(s)	Reported result (units)
Perumal et al.	M.	Fruit	Ethanolic extract	DPPH (IC50), TPC	DPPH IC50 reported
(2021). —	charantia				(μg/mL); TPC reported (mg
Antioxidant					GAE/g) — moderate
profile of M.					scavenging vs plant
charantia fruit.					standards.
Pham et al.	M.	Leaves /	Methanol /	DPPH, FRAP	Methanolic extracts: low
(2019). — wild	charantia	fruit	chloroform		IC50 (strong activity);
bitter melon					chloroform weaker.
activities.					
Fidrianny et al.	M.	Leaf,	Various (aqueous,	DPPH, FRAP	Leaves highest DPPH &
(2015). — three	charantia	fruit,	methanol)		FRAP among organs (IC50 &
organs of bitter		seed			FRAP values reported).
gourd.					
Chaudhary et al.	O. sanctum	Leaves	Butanol, ethyl	TPC, DPPH, FRAP,	Butanol/EtOAc fractions:
(2020). —			acetate fractions	ABTS	high TPC and
Ocimum					strongDPPH/FRAP/ABTS
sanctum					activity (reported as mg
profiling.					GAE/g and µmol TE/g).
Trevisan et al.	O. sanctum	Leaf (oil)	Hydrodistilled	Hypoxanthine/xanth	Essential oil IC ₅₀ = 0.46
(2006). —			essential oil	ine oxidase IC50	μL/mL (strong radical

essential oil					scavenging in that assay).
antioxidant					
(Ocimum).					
González-	M. oleifera	Leaves	Methanol / ethanol	DPPH, ABTS,	Moringa leaves among
Romero et al.			/ aqueous	FRAP, ORAC, TPC	highest TAC; TPC high
(2020). —					(reported mg GAE/g),
Moringa in salad					FRAP/ABTS/ORAC high
leaves					(μmol TE/g).
comparison.					
Braham et al.	M. oleifera	Leaves	Deep eutectic	TPC, TFC, DPPH,	DES extracts showed
(2022). — DES			solvents (DES)	ABTS, FRAP,	improved extraction and
extraction of				ORAC	high TE/g values (results in
Moringa leaves.					mmol TE/g or mg GAE/g
					depending on assay).
Olaoye et al.	M. oleifera	Leaves	Methanol etc.	DPPH, Lipid	Wide range across locations;
(2021). —				peroxidation, TPC	some samples had very high
location variation					DPPH inhibition and low
in Moringa					IC50; vitamin C standard
leaves (Nigeria).					often higher than samples.
Bhuker et al.	M. oleifera	Leaves,	Solvent extracts	DPPH, FRAP,	Leaves highest activity;
(2023). —		roots,		ABTS	roots/seeds lower; numeric
Moringa PKM-1		seeds			assay values reported (see
variety assays.					paper).
Anusmitha et al.	Ocimum	Leaves	Ultrasound-	DPPH, FRAP, TPC	Ultrasound/microwave-
(2022). —	sp. (incl.		assisted		assisted methanol extracts =
Ocimum	sanctum)		methanol/ethanol		higher TPC & antioxidant
ultrasound-					activity vs conventional
assisted extracts.					extraction.

In Vivo and Clinical Evidence on Antioxidant Activity of Momordica charantia, Ocimum sanctum, and Moringa oleifera All three plants exhibit consistent antioxidant effects in animal studies, including increases in non-enzymatic reserves (GSH, TAC) and enzymatic antioxidants (SOD, CAT, GPx) and decreases in lipid peroxidation (MDA/TBARS). Because of its high phenolic and vitamin C content in leaf extracts, Moringa oleifera frequently reports the biggest and most consistent changes in TAC and enzymatic activity. [23]In models of chemically induced oxidative damage and inflammation, Ocimum sanctum exhibits strong protection, and essential oil components (ursolic acid and eugenol) help

to modulate enzymes. Regardless of whether leaf, fruit, or seed extracts are used, Momordica charantia consistently reduces oxidative damage in diabetic and toxic models, though the magnitude of the effects varies.²⁴

Methodological heterogeneity, such as distinct extraction solvents (aqueous, hydroalcoholic, and organic), plant parts, dosage schedules, animal strains, assay procedures, and reporting units, complicates comparisons. Comparative claims are weakened by the fact that many animal reports lack dose-response experimentation, blinding, or power calculations.²⁵

Clinical evidence in humans is still in its early stages. Though these studies are usually short-term, small-sample, frequently uncontrolled or open-label, and use non-standardized extracts, small nutraceutical or supplement trials (available in a variety of forms: powders, capsules, and teas) have reported modest improvements in systemic antioxidant markers and reductions in oxidative/inflammatory biomarkers. The clinical effectiveness and relative ranking of the three species in humans are therefore still up for debate.^{26,27}

Table 4: Comparative Summary of In Vivo and Clinical Evidence on Antioxidant Activity of Momordica charantia, Ocimum sanctum, and Moringa oleifera. ^{29,30,31,32}

Biomarker /	Momordica	Ocimum sanctum (holy	Moringa	Typical models,	Limitations /
Outcome	charantia (bitter	basil) — animal evidence	oleifera —	dosing &	Notes
	melon) —		animal	endpoints reported	
	animal evidence		evidence		
Lipid	Repeated	Leaf or holy-basil oil	Leaf and seed	Rodent models	Reported effect
peroxidation	oral/aqueous or	extracts usually reduce	extracts	(rats/mice):	sizes highly
(MDA /	ethanolic	MDA, especially in models	frequently	induced oxidative	variable due to
TBARS)	leaf/fruit	of chemically-induced	show marked	stress (CCl ₄ ,	extraction
	extracts	oxidative stress or diabetes.	reduction in	S.TZ, alloxan or	method, plant
	commonly		MDA/TBARS	streptozotocin	part, dose and
	decrease MDA		, often greater	diabetes), doses	model. Units
	in liver, kidney		than controls	vary widely (e.g.,	often
	and serum vs		and correlated	100–500 mg/kg	inconsistent.
	controls.		with dose.	crude extract	
				typical); endpoints	
				after days-weeks.	
Superoxide	Often increased	Consistently upregulates	Strong, often	Same in vivo	Differences in
dismutase	SOD activity	SOD in liver/brain/serum in	dose-	models; enzyme	assay kits and
(SOD)	(tissue and	several models.	dependent	activity measured	expression
activity	serum), restoring		upregulation	by	(units)
	levels toward		of SOD,	spectrophotometri	complicate head-
	baseline.		sometimes	c assays;	to-head
			reported as	timepoints 7–28	comparison.

			largest enzymatic change.	days post- treatment.	
Catalase (CAT) activity	Frequently restores/increase s CAT activity depleted by oxidative insult.	Increases CAT activity in multiple tissues; leaf essential oil and aqueous extracts effective.	Robust increases in CAT activity reported; correlated	Tissue homogenates analyzed; results reported as U/mg protein or relative	Baseline enzyme activities vary by species/strain; some studies
			with decreased oxidative markers.	% change.	lack proper controls.
Glutathione peroxidase (GPx) / GSH levels	Many studies report increased GPx activity and total GSH after treatment.	Reports show improved GPx activity and GSH content in organs.	Repeatedly reported enhancement of GPx and GSH, indicating improved redox buffering.	GPx often measured alongside SOD/CAT; total GSH via DTNB or HPLC.	Under-reporting of sample size & blinding; few dose-response curves.
Other antioxidant markers (e.g., TAC, Nrf2)	Some studies show increased total antioxidant capacity (TAC) and Nrf2 pathway activation.	Evidence for increased TAC and modulation of antioxidant gene expression (Nrf2, HO-1).	Several reports of Nrf2 upregulation and improved TAC; some studies show downstream anti-inflammatory effects.	Molecular readouts (Western blot/qPCR) in subset of studies; biomarkers vary.	Molecular evidence less consistent — many studies do biochemical only, few provide mechanistic confirmation.
Functional / physiologica l outcomes	Improved organ function (liver/kidney	Protection against chemically-induced organ damage, improved	Improved organ histology,	Histology, serum biochemistry, behavior tests;	Translational relevance depends on

	markers),	behavioral/neurological	reduced	durations vary.	dosing relative
	reduced tissue	outcomes in some models.	inflammation,		to human
	damage, better		better		equivalent doses
	glycemic control		metabolic		(HED) which is
	in diabetic		markers —		often not
	models.		often most		calculated.
			pronounced		
			among the		
			three.		
Human trials	Very limited	Few small clinical studies	Several small-	Human trials are	Clinical
/	human data;	(supplementation/tea/extrac	scale human	typically short	evidence is
nutraceutical	small	t) report modest	studies and	(weeks), small N,	sparse,
interventions	nutraceutical	improvements in	nutraceutical	varied	heterogeneous in
	trials or	antioxidant biomarkers and	trials show	formulations	formulation/dose
	supplementation	subjective outcomes; results	improvements	(powder, capsule,	, and often
	studies report	mixed.	in antioxidant	tea), and often	underpowered.
	trends toward		status,	lack placebo	Firm clinical
	reduced		inflammatory	control.	conclusions
	oxidative stress		markers, and		cannot yet be
	markers and		metabolic		drawn.
	improved		indices — but		
	metabolic		heterogeneity		
	parameters, but		is large.		
	sample sizes				
	small.				
		1		i	

Conclusion

Although they do so through different phytochemical pathways and antioxidant profiles, Momordica charantia (bitter melon), Ocimum sanctum (holy basil), and Moringa oleifera (moringa) all exhibit exceptional capacity to scavenge free radicals. Moringa oleifera leaves have the highest total phenolic and flavonoid content, according to in vitro tests like DPPH, ABTS, FRAP, and ORAC. These assays are also correlated with strong reducing power and ferric ion chelation activity. Ocimum sanctum exhibits strong ABTS and DPPH scavenging properties, mostly because of its high eugenol, rosmarinic acid, and flavonoid content, whereas Momordica charantia works well in metal chelation and lipid peroxidation inhibition tests because of its triterpenoids and cucurbitane glycosides...

Hydroethanolic and methanolic extracts generally exhibit higher antioxidant activity than aqueous extracts, underscoring the significance of solvent extraction efficiency in phenolic recovery. Variations in solvent polarity and plant parts also

have a significant impact on assay results. Because they contain more bioactive secondary metabolites, leaf extracts typically perform better than fruit or seed extracts.

Overall, these results highlight the fact that the antioxidant capacity of plant systems cannot be fully captured by a single assay or extract. Therefore, to accurately assess antioxidant potential, a multi-assay and multi-extract approach is necessary. The integration of these botanicals into nutraceutical formulations and functional foods is supported by this comparative analysis, which highlights their potential for synergy in reducing disorders linked to oxidative stress.

References

- 1. Ghosh, R., & Ghosh, D. (2020). Antioxidants and their role in oxidative stress-linked diseases: A review. Journal of Clinical and Diagnostic Research, 14(6), 1–8. https://doi.org/10.7860/JCDR/2020/43758.13879
- 2. Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750. https://doi.org/10.1155/2013/162750
- 3. Grover, J. K., & Yadav, S. (2004). Pharmacological actions and potential uses of Momordica charantia: A review. Journal of Ethnopharmacology, 93(1), 123–132. https://doi.org/10.1016/j.jep.2004.03.016
- 4. Prakash, P., & Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian Journal of Physiology and Pharmacology, 49(2), 125–131.
- 5. Fahey, J. W. (2005). Moringa oleifera: A review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees for Life Journal, 1(5), 1–15.
- 6. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
- 7. Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199–1200. https://doi.org/10.1038/1811199a0
- 8. Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
- 9. Cao, G., Alessio, H. M., & Cutler, R. G. (1993). Oxygen-radical absorbance capacity assay for antioxidants. Free Radical Biology and Medicine, 14(3), 303–311. https://doi.org/10.1016/0891-5849(93)90027-R
- 10. Erel, O. (2004). A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry, 37(4), 277–285.
- 11. Gülçin, İ. (2006). Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217(2–3), 213–220. https://doi.org/10.1016/j.tox.2005.09.011
- 12. Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press.
- 13. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
- 14. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3

- 15. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods in Enzymology, 299, 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
- 16. Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
- 17. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. https://doi.org/10.1016/0003-2697(79)90738-3
- 18. Wolfe, K. L., & Liu, R. H. (2007). Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. Journal of Agricultural and Food Chemistry, 55(22), 8896–8907.
- 19. Anusmitha, M. S., Nair, A. G., & Sreedevi, P. (2022). Ultrasound-assisted extraction of bioactive compounds and antioxidant potential from Ocimum species. Journal of Food Biochemistry, 46(12), e14432. https://doi.org/10.1111/jfbc.14432
- 20. Bhuker, A., Kumar, R., & Dahiya, P. (2023). Comparative analysis of antioxidant potential and phytochemical composition of different parts of Moringa oleifera (PKM-1 variety). International Journal of Pharmaceutical Sciences and Research, 14(5), 2345–2354.
- 21. Braham, F., Chemat, S., & Khadhraoui, B. (2022). Green extraction of bioactive compounds from Moringa oleifera leaves using deep eutectic solvents: Optimization and antioxidant evaluation. Food Chemistry, 393, 133338. https://doi.org/10.1016/j.foodchem.2022.133338
- 22. Chaudhary, A., Singh, N., & Agarwal, V. (2020). Antioxidant profiling and phenolic composition of Ocimum sanctum leaf extracts and solvent fractions. Pharmacognosy Journal, 12(1), 150–157. https://doi.org/10.5530/pj.2020.12.25
- 23. Fidrianny, I., Sukrasno, S., & Wirasutisna, K. R. (2015). Antioxidant capacities of different organs of Momordica charantia L. in various polarities of solvent extracts. Asian Journal of Pharmaceutical and Clinical Research, 8(5), 223–227.
- 24. González-Romero, J., Escalante-Aburto, A., & Hernández-Ortega, M. (2020). Comparative evaluation of antioxidant capacity and phenolic content in Moringa oleifera leaves and common salad greens. Journal of Food Measurement and Characterization, 14(2), 1234–1243. https://doi.org/10.1007/s11694-019-00314-y
- 25. Olaoye, O. J., Oyedeji, A. O., & Oyedeji, O. O. (2021). Influence of geographical location on the phytochemical and antioxidant composition of Moringa oleifera leaves. Journal of Medicinal Plants Research, 15(4), 167–175.
- 26. Perumal, V., Kumar, S., & Kumaran, R. S. (2021). Phytochemical profiling and antioxidant potential of Momordica charantia fruit extracts. Journal of Applied Pharmaceutical Science, 11(10), 82–89. https://doi.org/10.7324/JAPS.2021.111010
- 27. Pham, H. N. T., Nguyen, T. T., & Tran, T. L. (2019). Antioxidant and cytoprotective activities of extracts from wild bitter melon (Momordica charantia). Journal of Food Biochemistry, 43(4), e12797. https://doi.org/10.1111/jfbc.12797

- 28. Trevisan, M. T. S., Pfundstein, B., Haubner, R., Würtele, G., Spiegelhalder, B., Bartsch, H., & Owen, R. W. (2006). Characterization of phenolic constituents in Ocimum sanctum L. (Holy basil) and their antioxidant capacity. Food and Chemical Toxicology, 44(9), 1474–1481. https://doi.org/10.1016/j.fct.2006.04.019
- 29. Halliwell, B., & Gutteridge, J. M. C. (2015). Free radicals in biology and medicine (5th ed.). Oxford University Press.
- 30. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53(6), 1841–1856. https://doi.org/10.1021/jf030723c
- 31. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
- 32. Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292