An International Journal House

Einstein International Journal Organization(EIJO)

Connecting People With Genius Thought

Einstein International Journal Organization(EIJO) is an international Genius Thought journals platform .
JOURNALS || EIJO Journal of Science, Technology and Innovative Research (EIJO – JSTIR) [ ISSN : 2455 - 9938 ]
In vitro and in Silico Guided Identification of Anti-Biofilm Agents from Syzygium palghatense Against Pseudomonas aeruginosa

Author Names : 1Snehalatha V R, 2Rasmi A.R.  Volume 10 Issue 4
Article Overview

Abstract

Background: Pseudomonas aeruginosa is a major opportunistic pathogen in cystic fibrosis, wound, and nosocomial infections, posing a serious burden to public health, due to its antibiotic resistance.  Antibiofilm agents serve as an essential tool in the fight against antibiotic resistance.

Objective: This study investigates the in vitro and in Silico Guided Identification of Anti-Biofilm Agents from Syzygium palghatense Against Pseudomonas aeruginosa

Methods: Leaves and bark of Syzygium palghatense were collected. Reference strains which were used to evaluate the antimicrobial activity of the methanol extract of leaves and bark of Syzygium palghatense were Aspergillus niger (ATCC 16404) and Candida albicans (ATCC 10231) for fungi and Staphylococcus aureus (ATCC 25923), Streptococcus mutans (MTCC 890) and Enterococcus fecalis (ATCC 2912) for Gram Gram-positive bacteria and E. coli (ATCC 25922) and Pseudomonas aeruginosa (ATCC 27853) for Gram Negative Bacteria. MIC values for filamentous fungi were determined using broth microdilution with methanol leaf and bark extracts serially diluted in DMSO (10–300 µg/ml). Antibiofilm activity against Pseudomonas aeruginosa was assessed, and molecular docking of bioactive compounds was performed against the target proteins of P. aeruginosa.

Results: The antimicrobial activity of methanol extracts from the leaves and bark of Syzygium palghatense varied against different pathogenic microorganisms. Pseudomonas aeruginosa shows higher activity. Syzygium palghatense extract has the ability to suppress the biofilm formation by Pseudomonas aeruginosa. Molecular docking shows a good docking score.

Conclusion: Methanol extracts of Syzygium palghatense demonstrated significant antimicrobial and antibiofilm activity against Pseudomonas aeruginosa, supported by favourable molecular docking results. These findings suggest that S. palghatense could serve as a potential natural source of anti-biofilm agents for managing P. aeruginosa-associated infections.

Keywords: Syzygium Palghatense, Pseudomonas Aeruginosa, Antimicrobial, Antibiofilm, Molecular Docking

 

Reference
  1. Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.L.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; et al. Complete Genome Sequence of Pseudomonas Aeruginosa PAO1, an Opportunistic Pathogen. Nature 2000, 406,959–964.
  2. Sommer, L.M.; Johansen, H.K.; Molin, S. Antibiotic Resistance in Pseudomonas Aeruginosa and Adaptation to Complex Dynamic Environments. Microb. Genom. 2020, 6, e000370.
  3. Maurice, N.M.; Bedi, B.; Sadikot, R.T. Pseudomonas Aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol. 2018, 58, 428–439.
  4. Rodrigo-Troyano, A.; Melo, V.; Marcos, P.J.; Laserna, E.; Peiro, M.; Suarez-Cuartin, G.; Perea, L.; Feliu, A.; Plaza, V.; Faverio, P.et al. Pseudomonas aeruginosa in Chronic Obstructive Pulmonary Disease Patients with Frequent Hospitalized Exacerbations: A Prospective Multicentre Study. Respiration 2018, 96, 417–424.
  5. Ben Haj Khalifa, A.; Moissenet, D.; Vu Thien, H.; Khedher, M. Virulence factors in Pseudomonas aeruginosa: Mechanisms and modes of regulation. Ann. Biol. Clin. 2011, 69, 393–403.
  6. Guadarrama-Orozco, K.D.; Perez-Gonzalez, C.; Kota, K.; Cocotl-Yanez, M.; Jimenez-Cortes, J.G.; Diaz-Guerrero, M.; Hernandez- Garnica, M.; Munson, J.; Cadet, F.; Lopez-Jacome, L.E.; et al. To Cheat or Not to Cheat: Cheatable and Non-Cheatable Virulence Factors in Pseudomonas aeruginosa. FEMS Microbiol. Ecol. 2023, 99, fiad128
  7. Bitwell, C. A review of modern and conventional extraction techniques for bioactive compounds—A practical update. Current Research in Food Science 2023, 6, 100289.
  8. Perez, C.; Pauli, M.; Bazerque, P. An antibiotic assay by the agar-well diffusion method. Acta Biologiae et Medicinae Experimentalis 1990, 15, 113–115.
  9. Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard. CLSI Document M07
  10. Espinel-Ingroff, A. Essential Quality Control and Reference Guidelines for CLSI Broth Microdilution Susceptibility Testing for Filamentous Fungi. J. Clin. Microbiol. 2007, 45(5), 1463–1467.
  11. Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. CLSI Document M38-A2 (for fungi)
  12. Freeman, D.J.; Falkiner, F.R.; Keane, C.T. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 1989, 42(8), 872–874. (For method description)
  13. Stepanovi?, S.; Vukovi?, D.; Hola, V., et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007, 115(8), 891–899.
  14. Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 2018, 13, 20.
  15. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461.
  16. Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for ligand–receptor docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.14.
  17. Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015;40:277–283.
  18. Sonmezer M.C., Ertem G., Erdinc F.S., Kaya Kilic E., Tulek N., Adiloglu A., Hatipoglu C. Evaluation of Risk Factors for Antibiotic Resistance in Patients with Nosocomial Infections Caused by Pseudomonas aeruginosa. Can. J. Infect. Dis. Med. Microbiol. 2016;2016:1321487. doi: 10.1155/2016/1321487.
  19. Papenfort K., Bassler. B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016;14:576–588. doi: 10.1038/nrmicro.2016.89.
  20. Sommer, L.M.; Johansen, H.K.; Molin, S. Antibiotic Resistance in Pseudomonas Aeruginosa and Adaptation to Complex Dynamic Environments. Microbial Genomics 2020, 6, e000370.
  21. Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed Atlas of Surface Topography of Proteins. Nucleic Acids Research 2018, 46, W363–W367.