EIJO: Journal of Ayurveda, Herbal Medicine and Innovative Research (EIJO - AHMIR)

A co-relative survey study of Praman Sharir and Balpariksha (Strength Examination)

${ }^{1}$ Deshpande Yogeshwar Nilkanth, ${ }^{2}$ Kandekar Sudhir Moreshwar, ${ }^{3}$ Joshi Dnyanesh Sudhakarrao
${ }^{1}$ Assistant Professor, ${ }^{2}$ Professor Department of Rachana Sharir; ${ }^{3}$ Assistant Professor, Department of Samhita Siddhant R.T.Ayurved Mahavidyalaya Akola, Maharashtra, India

Abstract

Classical Ayurvedic Texts like Charak Samhita describes very minute aspects of Sharir Rachana \& also its relations with other branches of Ayurveda. It is clearly mentioned that, height of every individual should be equal to 84 own finger width (Swangul Praman). If any individual fulfills this condition, he/she has better state of strength. To prove above statement of Acharya Charaka, it is necessary to co-relate the height and strength of individuals. For this purpose we have performed a project which is in search of relation between height and strength. Strength is measured on the basis of exercise capacity, energy level, and fatigue occurrence. For above said purpose height of individual was measured and exercise as skipping steps was advised to those individuals. Data was obtained after application of various parameters, inferences, and conclusions were drawn. From above research project, it can be said that research statement is true.

Keywords: Praman Sharir, Swangul Praman, Balpariksha.

1. Introduction

Rachana Sharir is very important part of Ayurvedic Classical Texts. Keen observations about various structures of sharira like Dhatu, Kurcha, Koshtha, Marmas etc. have been performed by our Acharyas. Acharya Charaka has described about proportions of different organs of human body in Vimansthan, Chapter eighth in 'Praman Sharir'.
In this chapter it is stated that, ideally the height of an individual should be equal to 84 own finger width. If it is equal to 84 own finger width, that individual will have well maintained body strength ${ }^{1}$. To re-search the relation between height and body strength, a survey study was conducted. Body strength should be measured by individual's exercise capacity ${ }^{2}$. Therefore we planned to find relation between height and exercise capacity of an individual.
AIM: To study relation between height and exercise capacity (i.e. strength).

Objectives

1. To calculate height of individual in his/her own finger width pattern (Swanguli Praman).
2. Measurement of maximum exercise capacity of each individual.
3. Measurement of parameters like Pulse variations, Respiratory Rate Variations, Blood Pressure Variations.
4. Observation of occurrence of fatigue during exercise.
5. To find out any relation between height and body strength.

2. Study Design

This study was conducted at department of Rachana Sharir of Radhakisan Toshniwal Ayurved Mahavidyalaya, Akola (Maharashtra- India). Total 100 students of this institute were randomly selected irrespective of gender, cast, religion, height, weight, age and studying year.

I-step- For calculation of individual's own finger width height his/her width of proximal joint of middle finger of palm was measured by vernier caliper. The figure obtained by the vernier caliper is equal to the swanguli praman of that individual. Thus with this aspect we have calculated the height of each individual with the help of swanguli praman.

This obtained data was divided into five different groups.

SN	Group	Range of Height (swanguli)
1	I	$60-65.9$
2	II	$66-70.9$
3	III	$71-75.9$
4	IV	$76-80.9$
5	V	$81-85.9$

II step- After above step, Pulse Rate, Respiratory Rate, And Blood Pressure of each individual was measured. These are pre measured parameters. The difference in those parameters after exercise would show the exercise capacity of each subject.
III step- Exercise of Skipping was allotted to each individual. The number of skipping actions was fixed to 135 (on the basis of pilot study conducted on 10 non subject individuals. Maximum number of skipping actions was counted. Average 120 skipping actions were calculated. We have further extended this average capacity by adding 15 numbers of skipping action to get the maximum capacity of strength of an individual. Thus the target to achieve the 135 skipping actions was assigned)Now this was very important step, because in this step keen observation was made for fatigue occurrence. For this purpose an eye was kept on each subject to find out slowing down speed of skipping action. After specific skipping actions each subject got slows down, that no. of skipping action was observed and mentioned. This no. of skipping action was mentioned as ' \boldsymbol{n} '. Also in this step time required for 135 skipping actions was measured and mentioned in chart. Those subjects who can't complete 135 actions, the time required for given exercise was found by mathematics.
IV step- Post exercise measurement of parameters i.e. Pulse, Respiratory Rate, Blood Pressure was done. The difference between pre and post measured parameters for each group was found. After that, mean difference in those parameters was found as follows.
Pulse- Pre exercise pulse was measured, post exercise pulse was also measured then difference between those numbers was found. Then summation of all these differences was done and divided by 20 which is group member's count. The number now find out is Mean difference of pulse rate. This is done for all 5 groups. By this way Mean differences of Respiratory Rates, systolic blood pressures were found. Mean difference of blood pressure was found only in between systolic BP, because only systolic blood pressure shows considerable variations.
V step- Inferences are drawn by comparison of pre measured and post measured parametric data, time requirement, and fatigue occurrence between all groups. Charts were prepared.

3. Selection Criteria

1. Individuals of age between 20 to 25 years, because of young age and good exercise capacity.
2. Males and females both were selected for this project.

4. Rejection criteria

1. Those individuals who have regular practice of skipping exercise, because it would create bias in our study.
2. Individuals with body condition which alters body strength like DM, Hypertension, Sickness, fever, dehydration, anemia, any other unhealthy condition.
The Data collected and compared as follows-

Pulse/minute

SN	Height group														
	60-65.5 Angul			66-70.9 Angul			71-75.9 Angul			76-80.9 Angul			81-85.9 Angul		
	Before	After	Diff.												
1	77	88	11	66	76	10	78	116	38	60	75	15	88	91	3
2	69	102	33	66	116	50	77	116	39	76	90	14	75	112	37
3	64	106	42	69	101	32	74	84	10	71	90	19	85	128	43
4	83	123	40	75	120	45	66	107	41	75	114	39	77	84	7
5	102	148	46	66	120	54	82	85	3	88	117	29	85	107	22
6	75	119	44	102	149	47	68	106	38	79	124	45	77	98	21
7	78	124	46	78	90	12	74	75	1	88	91	3	75	102	27
8	72	124	52	76	77	1	77	80	3	75	112	37	68	85	17
9	64	102	38	63	98	35	85	121	36	85	132	47	69	98	29
10	78	123	45	85	106	21	77	81	4	82	123	41	75	90	15
11	85	127	42	72	140	68	75	112	37	76	103	27	72	98	26
12	70	105	35	96	125	29	68	115	47	71	109	38	69	78	9
13	68	110	42	78	120	42	69	123	54	72	112	40	78	94	16
14	65	113	48	76	123	47	75	139	64	76	109	33	74	89	15
15	69	109	40	86	140	54	72	110	38	67	102	35	75	93	18
16	73	123	50	67	119	52	69	141	72	69	114	45	77	95	18
17	75	110	35	62	110	48	78	120	42	72	98	26	62	89	27
18	76	118	42	74	123	49	74	105	31	78	95	17	74	90	16
19	66	115	49	73	120	47	75	102	27	76	88	12	73	103	30
20	78	118	40	77	104	27	77	118	41	77	85	8	77	109	32
			820			770			666			570			428
Mean Pulse variation			41			38.4			33.1			28.5			21.4

Respiratory Rate

SN	Height group														
	60-65.5 Angul			66-70.9 Angul			71-75.9 Angul			76-80.9 Angul			81-85.9 Angul		
	Before	After	Diff.												
1	28	38	10	20	35	15	30	50	20	20	30	10	26	37	11
2	20	36	16	22	33	11	21	34	13	22	34	12	20	30	10
3	18	34	16	20	32	12	18	35	17	20	31	11	20	30	10
4	22	30	8	17	35	18	20	34	14	20	22	2	16	27	11
5	12	23	11	23	36	13	26	35	9	22	32	10	15	23	8
6	15	32	17	16	33	17	37	38	1	28	29	1	17	26	9
7	13	30	17	20	37	17	23	36	13	21	31	10	18	25	7
8	11	23	12	20	28	8	19	32	13	18	26	8	20	31	11
9	16	32	16	20	37	17	20	30	10	14	23	9	21	37	16
10	17	34	17	21	35	14	18	27	9	16	27	11	20	28	8
11	15	28	13	24	29	5	14	26	12	18	29	11	19	23	4
12	14	27	13	24	35	11	16	26	10	15	28	13	21	30	9
13	15	30	15	18	36	18	15	25	10	15	29	14	22	27	5
14	17	32	15	15	25	10	17	27	10	20	37	17	18	27	9
15	13	32	19	17	33	16	12	22	10	17	29	12	23	24	1
16	15	25	10	15	19	4	15	23	8	18	30	12	19	25	6
17	16	32	16	14	21	7	17	31	14	15	28	13	18	32	14
18	17	35	18	15	22	7	20	31	11	14	26	12	19	25	6
19	15	28	13	17	24	7	16	35	19	19	29	10	20	31	11
20	14	22	8	17	25	8	21	31	10	21	33	12	20	25	5
			280			235			233			210			171
Mean variation in respiratory rate			14			11.75			11.65			10.5			8.55

Systolic Blood Pressure

Time taken for 135 skipping actions

No. of skipping actions after which fatigue occurred
$\mathrm{n}=$ no. of skipping actions after which occurrence of fatigue observed

SN	Height group									
	60-65.9 Angul		66-70.9 Angul		71-75.9 Angul		76-80.9 Angul		81-85.9 Angul	
	No. of skipping actions performed	n								
1	110	57	45	35	43	25	51	28	62	31
2	105	46	100	60	50	31	40	34	65	29
3	108	45	45	32	84	47	47	35	68	32
4	84	49	98	45	72	38	55	41	78	42
5	36	11	63	38	48	28	52	33	120	81
6	110	50	136	72	44	28	81	53	110	78
7	108	45	48	33	37	19	120	67	122	90
8	101	40	60	39	65	39	118	56	110	77
9	98	38	62	40	57	25	102	57	112	67
10	87	35	33	20	60	42	108	58	78	47
11	82	43	97	45	89	62	87	42	83	51
12	100	59	49	25	118	80	85	45	89	58
13	88	39	95	51	124	81	80	45	92	60
14	67	37	88	49	135	81	121	93	82	48
15	92	41	108	72	158	90	108	81	87	48
16	98	45	143	82	128	71	97	64	94	58
17	70	30	128	63	145	83	80	52	90	59
18	97	45	45	25	126	65	98	65	80	45
19	89	41	150	78	65	40	85	45	92	56
20	89	48	138	60	73	36	87	45	78	41
		844		964		1011		1039		1098
Mean no of "n"		42.2		48.2		50.55		51.95		54.9

5. Observations

1. Height above 85.9 finger width (angul) and below 60 finger width (angul) was not found in any individual.
2. In Height group 60-65.9 mean pulse variation is 41,

In Height group 66-70.9 mean pulse variation is 38.4,
In Height group 71-75.9 mean pulse variation is 33.1,
In Height group 76-80.9 mean pulse variation is 28.5,
In Height group 81-85.9 mean pulse variation is 21.4.
3. In Height group 60-65.9 mean variation in respiratory rate is $\mathbf{1 4}$

In Height group 66-70.9 Mean variation in respiratory rate is $\mathbf{1 1 . 7 5}$
In Height group 71-75.9 Mean variation in respiratory rate is $\mathbf{1 1 . 6 5}$
In Height group 76-80.9 Mean variation in respiratory rate $\mathbf{1 0 . 5}$
In Height group 81-85.9 Mean variation in respiratory rate is $\mathbf{8 . 5 5}$
4. In Height group 60-65.9 mean variation in systolic blood pressure is $\mathbf{3 2 . 4}$

In Height group 66-70.9 Mean variation in systolic blood pressure is 28
In Height group 71-75.9 Mean variation in systolic blood pressure is $\mathbf{2 1}$
In Height group 76-80.9 Mean variation in systolic blood pressure is $\mathbf{1 8 . 3}$
In Height group 81-85.9 Mean variation in systolic blood pressure is $\mathbf{1 6 . 5}$
5. In Height group 60-65.9 mean time taken for 135 skipping actions is $\mathbf{1 3 9 . 8 4} \mathrm{sec}$ In Height group 66-70.9 mean time taken for 135 skipping actions is $\mathbf{1 0 0 . 0 9}$ sec
In Height group 71-75.9 mean time taken for 135 skipping actions is $\mathbf{9 4 . 2 3}$ sec
In Height group 76-80.9 mean time taken for 135 skipping actions is $\mathbf{8 9 . 0 3} \mathbf{~ s e c}$
In Height group 81-85.9 mean time taken for 135 skipping actions is $\mathbf{8 5 . 1 9} \mathbf{~ s e c}$
6. OBSERVATION OF OCCURRENCE OF FATIGUE- ' \mathbf{n} '

In Height group 60-65.9 mean no. of skipping actions after which fatigue occurred is $\mathbf{4 2 . 2}$
In Height group 66-70.9 mean no. of skipping actions after which fatigue occurred is $\mathbf{4 8 . 2}$
In Height group 71-75.9 mean no. of skipping actions after which fatigue occurred is $\mathbf{5 0 . 5 5}$
In Height group 76-80.9 mean no. of skipping actions after which fatigue occurred is $\mathbf{5 1 . 9 5}$
In Height group 81-85.9 mean no. of skipping actions after which fatigue occurred is 54.9.

6. Result

1. After performance of exercise of same quantity pulse rate, respiratory rate, systolic blood pressure varies in increasing order as height group decreases. It means for same bulk of exercise, efforts required to less height groups are more than higher height groups.
2. Time required completing 135 skipping exercise increases as height group decrease. It means for same quantity of exercise lesser height groups require more time.
3. As height group decreases, fatigue occurs early. It means that fatigue occurrence is observed late in higher height groups, in other words individuals with higher height group acquired less fatigue.

7. Conclusion

As per Charak Samhita Viman Sthan, 84 swangul height is ideal. If it is present an individual will have more strength. It means that individual can perform more exercise with less fatigue and more work with more enthusiasm. By above study it is proved that research statement is true.

8. References

[1[. Pt. Kashinath Shastri, Charak Samhita, Vidyotini Hindi commentary, First part, Viman Sthan, Chapter 8, Citation No.
117, Second edition 1983,Chukhamba Sanskrit Sansthan Varanasi, page no. 668.
[2]. Pt. Kashinath Shastri, Charak Samhita, Vidyotini Hindi commentary, First part, Viman Sthan, Chapter 8, Citation No. 117, Second edition 1983,Chukhamba Sanskrit Sansthan Varanasi, page no. 671.

