A PHP Error was encountered

Severity: Notice

Message: Undefined offset: 0

Filename: models/Journals_model.php

Line Number: 97

Backtrace:

File: /home/eijo/public_html/application/models/Journals_model.php
Line: 97
Function: _error_handler

File: /home/eijo/public_html/application/controllers/Journals.php
Line: 225
Function: get_journals

File: /home/eijo/public_html/index.php
Line: 292
Function: require_once

Einstein International Journal Organization(EIJO)

An International Journal House

Einstein International Journal Organization(EIJO)

Connecting People With Genius Thought

Einstein International Journal Organization(EIJO) is an international Genius Thought journals platform .
JOURNALS ||
The role of haplotype 750 A>G in matrilineal inheritance of cardiovascular disease in Iranian patients referred to a cardiac hospital

Author Names : Reza Ghadiri Rad*, Ali Samadi Kouchaksaraei, Massoud Houshmand, Fatemeh Arabgari  volume 1 issue 1
Article Overview

Abstract 

Introduction: The pivotal role of mitochondria in energy production and free radical generation suggests that the mitochondrial genome could have an important influence on the expression of multifactorial age related diseases. Coronary Artery Disease (CAD) is an important, common disorder in humans and the first cause of death in many communities. Early diagnosis, before manifestation of symptoms or identifying susceptibility to these diseases can reduce the severity and prevalence and may even control or inhibit the disease progression. Now the relationships between the incidence of cardiovascular diseases and certain types of haplotypes of human mtDNA (mitochondrial DNA) have been substantiated and investigation of the frequency of particular types of cases and controls can reveal this connection. This study investigates associations of Iranian mitochondrial DNA lineages with CAD.

Aims: The aim of the current study was to identify and evaluate different haplotype mtDNA and examine their relationship to the incidence of coronary artery disease in different haplogroups in Iranian patients visiting SINA hospital in Tehran.

Methods: Two groups of participants including patients and controls (70 cases including 40 males and 30 females) from among the patients visiting the Cath lab (angiography ward) in Sina Hospital were selected according to the coronary stenosis index (CSI). After obtaining informed consents from the participants, a 5 cc of blood sample was drawn from each of them and was sent to the laboratory. Subsequently, the genomic DNA (approximately 50 mcg) of each blood sample was extracted, a specific region of mtDNA of the samples  was replicated  using two primer pairs of D-Loop, and  the separation process of the amplicon (the product)  was carried out by the electrophoresis. The next step involved the sequencing which was then compared to the reference sequence. According to the SNP type, polymorphisms, their various mutations, and the percentage of their presence in patients and controls were determined and the data was analyzed.

Results: Highly frequent observations include haplotype 263 A>G with 62 samples from 34 patients, 23 normal cases, and 5 mild cases, 310-311 insC with 61 samples from 35 patients, 21 normal cases, and 5 mild cases, variant 750 A>G with 59 cases from  33 patients , 20 normal cases, and 6 moderate cases, other SNP 73 a>G with 45 cases from 23 patients, 17 normal cases, and 5 average cases, 40  cases of varieties 16519 T>C with 24 patients, 13 normal cases, and 3 moderate cases, and 32 cases with  mutations 309-310 insC with 17 patients, 10 normal cases,  and 5 mild cases. Some changes including  C>T and ins CC, irrespective of position, and some cases with respect to  research and ethnic background were also examined.

Conclusion: The 263 A>G, 310-311 insC, 750 A>G, 73 A>G, 16519 T>C and 309-310 insC which constituted the most frequent observations are of more significant importance among patients with cardiovascular disorders. Although, past research has indicated that these changes (except 750 A> G and gender) occur with certain diseases, in the present study, they were shown to serve as a polymorphism with no apparent specific allelic association.

Keywords: Coronary Artery Disease (CAD), Reference Sequence, The Mitochondrial Genome (mtDNA), Haplotype, Haplogroup, Single Nucleotide Polymorphism (SNP), Coronary Stenosis Index (CSI)

 

Reference

[1]. Peter D- Emery's Elements of Medical Genetics, 14th edition, 2012 (Chapter 9).

[2]. Peter D- Emery's Elements of Medical Genetics, 14th edition, 2012 (Chapter 7).

[3]. Peter D- Emery's Elements of Medical Genetics, 14th edition, 2012 (Chapter 11).

[4]. Poulton J, Luan J, Macaulay V, et al. (2002) Type 2 diabetes is associated with a common mitochondrial variant: evidence from a population-based case-control study. Hum Mol Genet11:1581–1583.

[5]. Lee YY, Park KS, Pak YK, Lee HK (2005) The role of mitochondrial DNA in the development of type 2 diabetes causedby fetal malnutrition. J Nutr Biochem 16:195–204.

[6]. Katagiri H, Asano T, Ishihara H, et al. (1994) Mitochondrial diabetesmellitus: prevalence and clinical characterization ofdiabetes due to mitochondrial tRNA(Leu(UUR)) gene mutationin Japanese patients. Diabetologia 37:504–510.

[7]. Gerbitz KD, van den Ouweland JM, Maassen JA, Jaksch M(1995) mitochondrial diabetes mellitus: a review. BiochimBiophys Acta 1271:253–260.

[8]. Lee YY, Park KS, Pak YK, Lee HK (2005) The role of mitochondrialDNA in the development of type 2 diabetes causedby fetal malnutrition. J Nutr Biochem 16:195–204.

[8]. Suzuki M, Toyooka S, Miyajima K, et al. Alterations inthe mitochondrial displacement loop in lung cancers. ClinCancer Res 2003; 9: 5636-41.

[9]. Wallace DC (1999) mitochondrial diseases in man and mouse. Science 283:1482–1488.

[10]. Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., Staden, R., & Young, I. G. (1981) Sequence and organization of the human mitochondrial genome. Nature 290, 457–465.

[11]. Fernandez-Silva P, Enriquez JA, Montoya J. Replication andtranscription of mammalian mitochondrial DNA. ExpPhysiol 2003; 88: 41-56.DiMauro S, Schon EA: Mitochondrial respiratory-chain diseases.N Engl J Med 2003, 348:2656-2668.

[12]. Pakendorf, B. & Stoneking, M. (2005) Mitochondrial DNA and human evolution. Annu Rev Genomics Hum Genet 6, 165–183.

[13]. Cann, R. L., Stoneking, M., &Wilson, A. C. (1987) Mitochondrial DNA and human evolution. Nature 325, 31–36.

[14]. Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu Rev Genet 39, 359–407.

[15]. Strachan T, Read A. Human amolecular Genetics, 4th edition, 2010, Garland Science, London (Chapter 3).

[16]. Strachan T, Read A. Human amolecular Genetics, 4th edition, 2010, Garland Science, London (Chapter 19).

[17]. Peter D- Emery's Elements of Medical Genetics, 14th edition, 2012 (Chapter 15).

[18]. Nishigaki, Y., Yamada, Y., Fuku, N., Matsuo, H., Segawa, T., Watanabe, S., Kato, K., Yokoi, K., Yamaguchi, S., Nozawa, Y., & Tanaka, M. (2007) Mitochondrial haplogroup N9b is protective against myocardial infarction in Japanese males. Hum Genet 120, 827–836.

[19]. Guzik, T. J., Sadowski, J., Guzik, B., Jopek, A., Kapelak, B., Przybylowski, P., Wierzbicki, K., Korbut, R., Harrison, D. G., & Channon, K. M. (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler Thromb Vasc Biol 26, 333–339.

[20]. Abu-Amero, K. K., Al-Boudari,O.M., Mousa, A.,Gonzalez, A.M., Larruga, J. M., Cabrera, V. M., & Dzimiri, N. (2010) mitochondrial DNA variant 16189T>C is associated with coronary artery disease and myocardial infarction in Saudi Arabs. Genet Test Mol Biomarkers 14, 43–47.

[21]. Benn, M., Schwartz, M., Nordestgaard, B. G., & Tybjaerg-Hansen,A. (2008) Mitochondrial haplogroups: Ischemic cardiovasculardisease, other diseases, mortality, and longevity in the generalpopulation. Circulation 117, 2492–2501.

[22]. Del Bo, R., Bordoni, A., Sciacco, M., Di Fonzo, A., Galbiati, S., Crimi, M., Bresolin, N., Comi, G. P. (2003) Remarkable infidelity of polymerase gammaA associated with mutations in POLG1 exonuclease domain Neurology . 61 (7): 903-908.

[23]. Ebner, S., Lang, R., Mueller, E. E., Eder, W., Oeller, M., Moser, A., Koller, J., Paulweber, B., Mayr, J. A., Sperl, W., Kofler, B. (2011) Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: a study in middle European Caucasians PLoS One . 6 (12): e27192 .

[24]. Coskun, P. E., Beal, M. F., Wallace, D. C. (2004) Somatic mitochondrial DNA control region mutations are prevalent in Alzheimer Disease brains Proceedings of the National Academy of Sciences of the United States of America . 101 (29): 10726-10731 .

[25]. Maximo, V., Soares, P., Lima, J., Cameselle-Teijeiro, J., Sobrinho-Simoes, M. (2002) Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hurthle cell tumors American Journal of Pathology . 160 (5): 1857-1865 .

[26]. Chen, J. Z., Gokden, N., Greene, G. F., Mukunyadzi, P., Kadlubar, F. F. (2002) Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection Cancer Research . 62 (22): 6470-6474

[27]. Brandon, M., Baldi, P., Wallace, D. C. (2006) Mitochondrial mutations in cancer Oncogene . 25 (34): 4647-4662 .

[28]. Calloway, C. D., Reynolds, R. L., Herrin, G. L., Jr., Anderson W. W. (2000) The frequency of heteroplasmy in the HVII region of mtDNA differs across tissue types and increases with age American Journal of Human Genetics . 66 (4): 1384-1397 .

[29]. Nekhaeva, E., Bodyak, N. D., Kraytsberg, Y., McGrath, S. B., Van Orsouw, N. J., Pluzhnikov, A., Wei, J. Y., Vijg, J., Khrapko, K. (2002) Clonally expanded mtDNA point mutations are abundant in individual cells of human tissues Proceedings of the National Academy of Sciences of the United States of America . 99 (8): 5521-5526 .

[30]. Del Bo, R., Bordoni, A., Sciacco, M., Di Fonzo, A., Galbiati, S., Crimi, M., Bresolin, N., Comi, G. P. (2003) Remarkable infidelity of polymerase gammaA associated with mutations in POLG1 exonuclease domain Neurology . 61 (7): 903-908.

[32]. Fliss, M. S., Usadel, H., Caballero, O. L., Wu, L., Buta, M. R., Eleff, S. M., Jen, J., Sidransky, D. (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids Science . 287 (5460): 2017-2019 .

[33]. Chen, J. Z., Gokden, N., Greene, G. F., Mukunyadzi, P., Kadlubar, F. F. (2002) Extensive somatic mitochondrial mutations in primary prostate cancer using laser capture microdissection Cancer Research . 62 (22): 6470-6474 .

[34]. Wu, C. W., Yin, P. H., Hung, W. Y., Li, A. F., Li, S. H., Chi, C. W., Wei, Y. H., Lee, H. C. (2005) Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer Genes, Chromosomes and Cancer . 44 (1): 19-28 .

[35]. Kirches, E., Krause, G., Warich-Kirches, M., Weis, S., Schneider, T., Meyer-Puttlitz, B., Mawrin, C., Dietzmann, K. (2001) High frequency of mitochondrial DNA mutations in glioblastoma multiforme identified by direct sequence comparison to blood samples International Journal of Cancer . 93 (4): 534-538 .

[36]. Brandon, M., Baldi, P., Wallace, D. C. (2006) Mitochondrial mutations in cancer Oncogene . 25 (34): 4647-4662 .

[37]. Bragoszewski, P., Kupryjanczyk, J., Bartnik, E., Rachinger, A., Ostrowski, J. (2008) Limited clinical relevance of mitochondrial DNA mutation and gene expression analyses in ovarian cancer BMC Cancer . 8 (-): 292 .

[38]. Tanaka, N., Goto, Y. I., Akanuma, J., Kato, M., Kinoshita, T., Yamashita, F., Tanaka, M., Asada, T. (2010) Mitochondrial DNA variants in a Japanese population of patients with Alzheimer's disease Mitochondrion . 10 (1): 32-37 .

[39]. Arnestad M, Opdal SH, Musse MA, Vege A, Rognum TO. Are substitutions in the first hypervariable region of mitochondrial DNA displacement-loop in sudden infant death syndrome due to maternal inheritance? Acta Paediatr 2002; 91: 1060-4.