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Abstract   

In this paper, a novel optimization technique is planned to solve large scale non smooth Economic Dispatch 

(ED) problem involving Cubic Cost Functions (ED-CCF). The proposed approach is based on a Teaching 

Learning Based Optimization (TLBO) algorithm which mimics teaching–learning process in a class between 

the teacher and the learners. The TLBO method works on the philosophy of teaching and learning.  In order to 

validate the proposed methodology, comprehensive simulation results acquired on 156 unit test system are 

presented and examined. A comparative analysis with other settled nature inspired solution algorithm 

demonstrates the superior performance of the proposed methodology in terms of both solution accuracy and 

convergence performance. 

Keywords: Economic dispatch, teaching learning based optimization, non smooth, cubic cost functions, and 

large scale system. 

Introduction 

Economic Dispatch is one of the main functions of the modern energy management system which determines the optimal 

real power settings of generating units with an objective to minimize the total fuel cost of dispatch solutions in cases 

where the classical methods ceases to be applicable. Classical search techniques employed to solve economic dispatch 

problem produce inaccurate results because the operating units have non-linear incremental cost curves and the 

conventional procedure either ignores or flattens out the portions of non-linear regions of the curves. But such 

approximations are not desirable as they may lead to sub-optimal operation and hence huge revenue loss results over time. 

Hence, there is a demand for techniques that do not impose restrictions on the shape of the fuel cost curves. 

In order to get the qualitative solution for the ED-CCF problem, optimization techniques have been successfully applied 

for thermal generators. A literature survey is carried out for the solution techniques to ED-CCF problem are elaborated as 

follows. Limited reports are available in the literature for the chosen problem. Initially in the 20th century, different 

mathematical [1] and heuristic solution techniques such as iterative method [2], sorted table method [3], dedicated 

projection method [4], Newton’s Method (NM) [5], Evolutionary Programming (EP) [6], and Quadratic Programming 

(QP) [7] have been developed and applied successfully to ED problems. Recently in 21th century, meta-heuristic and 

hybrid techniques such as Dynamic Hopfield Neural Network (HNN) [8], Partition Approach Algorithm (PAA) [9], 

Pattern Search (PS) algorithm [10], Bacterial Foraging-Nelder Mead (BF-NM) Method [11] and TLBO [12] have been 

effectively applied to ED problems with cubic cost functions.Still extensive research is being conducted in the area of ED 

with the support of nature inspired algorithms. As a result, meta-heuristic optimization algorithms were developed by 
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inspiring natural phenomena or biological behavior and were applied to solve various engineering optimization problems. 

Some of the most well known algorithms are genetic algorithm, simulated annealing, EP, particle swarm optimization, 

Bacterial Foraging Algorithm (BFA) and artificial bee colony algorithm. These optimization techniques require algorithm 

parameters that decide their performance. Improper selection of parameters leads to trap the solution on local optima.  

In this paper, a recent heuristic algorithm introduced by Rao et al. [13] named Teaching Learning Based Optimization 

(TLBO) algorithm [14], based on the effect of the influence of a teacher on the output of learners in a class, is utilized for 

the solution of         ED-CCF problem. 

ED with Cubic Cost Functions 

The objective of the large scale ED-CCF problem is to minimize the total system fuel cost over some appropriate period 

while satisfying various constraints, and thus the problem can be defined as the following constrained optimization 

problem: 
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Where ai, bi, ci and di are the fuel cost coefficients and N is the number of generating units. 

Power balance constraints: The generated power of all thermal generating units must fulfil the load demand, which is 

defined as            
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Power generation limits: The generating unit power output must falls within its minimum (Pi, min) and maximum limits 

(Pi, max), which can be formulated as: 
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Teaching Learning Based Optimization  

TLBO is an innovative optimization algorithm inspiring the natural phenomena, which mimics teaching–learning process 

in a class between the teacher and the students (learners). The TLBO method works on the philosophy of teaching and 

learning. Teacher generally wishes to attain best level on the output of learners in a class. Output is evaluated by means of 

exam conducted by the teacher. Generally the teacher is considered as highly intellectual person whose quality affects the 

outcome of the learners.Teacher and learners are the two vital components of the algorithm. In this optimization 

algorithm, a group of learners is considered as population and different design variables are considered as different 

subjects offered to the learners and the learners’ result is analogous to the ‘fitness’ value of the optimization problem. In 

the entire population, the best solution is considered as the teacher. The working of TLBO is divided into two parts, 

‘teacher phase’ and ‘learner phase’. Functioning of both the phases is explained below. 

Teacher Phase 

It is the first part of the algorithm where initially learners learn through the teacher. During this phase a teacher tries to 

increase the mean result of the class in the subject taught by him or her, depending on his or her ability. The teacher is 
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generally considered the most learned person in the society. This aspect is considered in the TLBO algorithm. This 

algorithm is a population-based method which starts with a set of solutions known as the population. As the teacher is 

considered the most learned person, the best solution from the population is considered as the teacher. The purpose of a 

teacher is to increase the knowledge of the students. In practice, however, it is not possible for a teacher to increase the 

level of the students equally as different students possess different knowledge levels. 

A survey of the knowledge possessed by the students will give some mean knowledge value. A teacher, after teaching, 

will improve this mean level of the students to a better mean knowledge value. This aspect is represented in mathematical 

form and is implemented for the optimization. During the teacher phase, a teacher tries to increase the mean result of the 

classroom from any value M1 to his or her level (i.e. TA). But practically it is not possible and a teacher can move the 

mean of the classroom M1 to any other value M2 which is better than M1 depending on his or her capability. Consider Mj 

be the mean and Ti be the teacher at any iteration i. Now Ti will try to improve existing mean Mj towards him or her so the 

new mean is designated as Mnew and the difference between the existing mean and new mean is given by Equation (4). 

Difference meani = randi (Mnew - TFMj)                      (4) 

where TF is the teaching factor which decides the value of mean to be changed, and ri is the random number in the range 

[0, 1]. TF is not a parameter of the TLBO algorithm and it is decided randomly with equal probability. The value of TF can 

be determined heuristically which is either 1 or 2, using Equation (5). The existing solution is updated using Equation (6). 

TF = round [1+rand (0, 1) {2-1}]                                (5) 

Xnew, i =Xold, i + Difference meani.                                                            (6) 

Learner Phase 

It is the second part of the algorithm where learners increase their knowledge by interaction among themselves. A learner 

interacts randomly with other learners for enhancing his or her knowledge. A learner learns new things if the other learner 

has more knowledge than him or her. Mathematically the learning phenomenon of this phase is expressed below. 

At any iteration i, considering two different learners Xi and Xj where i ≠ j the new solution is updated as  

 Xnew, i = Xold, i+randi (Xi - Xj) if f(Xi) < f(Xj)                      (7)       

 Xnew, i = Xold, i+randi (Xj - Xi) if f(Xj) < f(Xi)                      (8) 

Accept Xnew if it gives better function value. 

The candidate solution composes of design variables and is qualified according to its fitness. The solution having best 

fitness in the population is determined as the teacher. The entire process is continued until reaching the termination 

criteria. 

Results and Discussion 

The chosen test system is a 156 unit large scale system involving cubic cost functions make the test system non-smooth in 

nature. The operating range, cost coefficients of the 156 thermal generators are obtained from [12]. The proposed 

algorithm has been implemented in Matlab 7.9 and executed on HP personal computer with Intel core i3 processor with 

4GB ram.  The TLBO based ED-CCF is carried out for demands of 9000MW, 10000MW and 11000 MW and the 

obtained results are compared with other rival BBO algorithm in Table 2. Table 1 lists the detailed dispatch results of 156 
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unit system for a demand of 10000MW. The minimum cost obtained by the proposed method for demand of 9000MW, 

10000MW and 11000 MW are respectively 154406.25 $/h, 162712.80 $/h and 176931.46 $/h without violation of power 

balance constraint and other operational constraints.  

Table 1: Dispatch results of 156 unit large scale system for a demand of 10000 MW 

 

Units Pi (MW) Units Pi (MW) Units Pi (MW) Units Pi (MW) Units Pi (MW) Units Pi (MW) 

1 3.346974 27 6.466011 53 2.4 79 8 105 8.344719 131 8 

2 8.738011 28 8 54 3.220959 80 2.4 106 7.440288 132 9 

3 8.539432 29 6.13665 55 5 81 2.4 107 2.4 133 2.4 

4 4.93002 30 8 56 6.096689 82 3.125669 108 3 134 3.203074 

5 2.4 31 4 57 5.305705 83 2.54402 109 7 135 7.00018 

6 8 32 5.109299 58 18.52641 84 4 110 8.809672 136 14.5239 

7 12.84227 33 11.68227 59 4.307442 85 5 111 15.82333 137 4 

8 14 34 4 60 4 86 5.77802 112 4 138 4 

9 4 35 14.82766 61 9 87 6.159178 113 7.870075 139 4.886435 

10 15.2 36 69.19729 62 15.2 88 15.2 114 49.71649 140 27 

11 64.17912 37 15.2 63 44.37123 89 39.26075 115 56.95882 141 15.2 

12 20.61357 38 67.24467 64 26 90 29.43445 116 29.68728 142 15.2 

13 29 39 27.7368 65 62.13097 91 41.65048 117 15.2 143 17 

14 25 40 43.54648 66 25 92 27.71934 118 76.77837 144 37 

15 70.84116 41 45.38855 67 35 93 55 119 69.85147 145 48.23208 

16 35.92165 42 44.14257 68 49.31468 94 58.87839 120 36.35189 146 68 

17 54.25 43 60 69 61.93787 95 91.07402 121 54.25 147 143.879 

18 111 44 96 70 74 96 54.25 122 99.2129 148 84.77316 

19 101.9174 45 108 71 108.069 97 54.25 123 87.32719 149 74 

20 54.25 46 68.97791 72 54.25 98 54.25 124 91.49022 150 54.25 

21 123 47 72 73 148.6117 99 68.95 125 189.5878 151 103 

22 107.8098 48 80.88483 74 119.8775 100 177.4776 126 85 152 147 

23 68.95 49 85 75 68.95 101 98.29502 127 68.95 153 68.95 

24 254.7451 50 258 76 140 102 267 128 270.3687 154 166.5441 

25 398.051 51 337.9693 77 154 103 194.5416 129 177 155 221 

26 179.825 52 368.4132 78 175 104 250.0793 130 295.9771 156 100 

Fuel Cost ($/h) 
       

162712.8 
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Table 2: Comparative results of 156 unit system 

Demand TLBO BBO 

9000 MW 154406.25 155068.96 

10000 MW 162712.80 163322.56 

11000 MW 176931.46 177069.07 

 

It can be seen from the Table 2 that, the solution quality of TLBO algorithm is better than those obtained by BBO method. 

The proposed algorithm settings are selected after conducting many experiments so as to obtain the best fuel cost value 

and to accelerate the convergence rate. The variations of the fuel cost against iterations are illustrated as convergence 

characteristics in Fig. 1, which clearly shows the higher convergence rate of the proposed algorithm.  

 
Figure 1: Convergence Characteristics of TLBO for 156 unit system for Pd = 10,000 MW. 

Conclusion 

In this paper, TLBO algorithm is proposed to solve the large scale ED-CCF problem. Performance of the proposed 

algorithm is compared with BBO technique. The comparison validates the ability of proposed TLBO to solve such a 

complex large scale system. In addition, the proposed approach has been successfully implemented to the non-smooth 

ED-CCF problem. This test system is large enough to validate the performance of the TLBO algorithm. Based on the 

comparable differences between TLBO and BBO, it can be concluded that the TLBO appears to be a robust and reliable 

optimization technique for solving ED-CCF in large scale power system. 
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